
From “Hello World\n” to the VFS Layer
Building a HAMMER2 beadm(1) in C

newnix

Exile Heavy Industries

September 22, 2018

newnix From “Hello World\n” to the VFS Layer

Introductions

Who am I?

College dropout
Network, VM, and Storage Administrator/Engineer
General UNIX-like systems admin
General computing and hacking enthusiast
Guy that loves working with C and other “low-level” languages
Minimalism and Simplicity Enthusiast

newnix From “Hello World\n” to the VFS Layer

I’m not a professional (Developer)

My first point of pride was this simple difference in executable size:
% stat -x ‘which env‘ ‘which nxenv‘

File: ‘‘/usr/bin/env’’
Size: 77256 FileType: Regular File

File: ‘‘/home/newnix/bin/c/nxenv’’
Size: 6168 FileType: Regular File

newnix From “Hello World\n” to the VFS Layer

I’m not a professional (Developer)

My first point of pride was this simple difference in executable size:
% stat -x ‘which env‘ ‘which nxenv‘

File: ‘‘/usr/bin/env’’
Size: 77256 FileType: Regular File
File: ‘‘/home/newnix/bin/c/nxenv’’
Size: 6168 FileType: Regular File

newnix From “Hello World\n” to the VFS Layer

Docs! Everyone’s Favorite

man(1) is actually useful
libc Everything’s actually documented in section 3, so easy to get

to work
syscalls Syscalls are all under section 2, including everyone’s favorite:

ioctl(2)!
perl I’m not the biggest fan, but I love that section 3p actually

exists
examples The single best thing when learning, is having example code or

struct layouts embedded in the documentation

newnix From “Hello World\n” to the VFS Layer

Brief intro to HAMMER2

Probably the best HAMMER yet
CoW One of the single coolest features available in filesystems today
LZ4 By default, everything gets compressed, if it can be
PFS Analagous to ZFS datasets, this lets you create separate

filesystems for certain sections of your install
Clustering Not available yet, but HAMMER2 is designed to allow

mounting over the network, so you can distribute your storage

newnix From “Hello World\n” to the VFS Layer

Get the Filesystems

This turned out to be pretty simple after some experimenting with
statfs(2) and statvfs(2), as well as getfsstat(2)

Downside: Requires creating a buffer large enough to store results

Upside: Passing a NULL pointer returns number of mounted filesystems,
actually returns usable data

Conclusion: I would not be surprised if there’s a better method, but I haven’t
come across it yet

newnix From “Hello World\n” to the VFS Layer

Example use of getfsstat

if ((fscount = getfsstat(NULL, 0, MNT WAIT)) > 0) {
if ((buf = calloc(sizeof(struct statfs*), fscount)) != NULL) {

ret = getfsstat(buf, (sizeof(*buf) * fscount), MNT WAIT);
}

}

newnix From “Hello World\n” to the VFS Layer

Determine if they’re HAMMER2

statfs(2) statfs->f fstype has the filysestem type string

getfsent(3) fstab->fs vfstype only available if the filesystem’s listed in the
fstab

ioctl(2) HAMMER2IOC PFS LOOKUP will return false positives for NULLFS
mounts

My code is currently relying on a few assumptions I’d like to
eliminate by finding a better means of identifying filesystems

newnix From “Hello World\n” to the VFS Layer

Determine if they’re HAMMER2

statfs(2) statfs->f fstype has the filysestem type string

getfsent(3) fstab->fs vfstype only available if the filesystem’s listed in the
fstab

ioctl(2) HAMMER2IOC PFS LOOKUP will return false positives for NULLFS
mounts

My code is currently relying on a few assumptions I’d like to
eliminate by finding a better means of identifying filesystems

newnix From “Hello World\n” to the VFS Layer

Determine if they’re HAMMER2

statfs(2) statfs->f fstype has the filysestem type string

getfsent(3) fstab->fs vfstype only available if the filesystem’s listed in the
fstab

ioctl(2) HAMMER2IOC PFS LOOKUP will return false positives for NULLFS
mounts

My code is currently relying on a few assumptions I’d like to
eliminate by finding a better means of identifying filesystems

newnix From “Hello World\n” to the VFS Layer

And now everyone’s favorite thing about C: STRINGS!

This has so far been the most difficult part of the project
fstab(5) 100% strings, fortunately, the getfsent(3) function will

parse it into an fstab struct for us

ioctl(2) HAMMER2IOC PFS GET will provide a pfs.name, which has to
be parsed and updated for the BE creation

statfs(2) fstat->f fstypename is a string as well, and using
fstat->f type is unreliable

newnix From “Hello World\n” to the VFS Layer

And now everyone’s favorite thing about C: STRINGS!

This has so far been the most difficult part of the project
fstab(5) 100% strings, fortunately, the getfsent(3) function will

parse it into an fstab struct for us
ioctl(2) HAMMER2IOC PFS GET will provide a pfs.name, which has to

be parsed and updated for the BE creation

statfs(2) fstat->f fstypename is a string as well, and using
fstat->f type is unreliable

newnix From “Hello World\n” to the VFS Layer

And now everyone’s favorite thing about C: STRINGS!

This has so far been the most difficult part of the project
fstab(5) 100% strings, fortunately, the getfsent(3) function will

parse it into an fstab struct for us
ioctl(2) HAMMER2IOC PFS GET will provide a pfs.name, which has to

be parsed and updated for the BE creation
statfs(2) fstat->f fstypename is a string as well, and using

fstat->f type is unreliable

newnix From “Hello World\n” to the VFS Layer

Atomicity

One thing that’s been increasingly important in modern programs
is the concept of atomic operations, I’d like to have some
guaranteed level of atomicity in this project as well.

ROFS If root, and therefore /etc is read-only, then we can’t install
the new fstab

OOM Print an error message, alert the user, clean up and exit
SIGINT Present confirmation prompt to the user prior to cleanup

SIGTERM Cleanup and exit without confirmation
SIGKILL Trickier; ideally have a cleanup thread run in case of partial

creation

newnix From “Hello World\n” to the VFS Layer

Design and abstraction

All functions and variables are scope limited to the operations that
need them

FS Functions other than ish2() should be filesystem-agnostic

Plugins I’d like to create a means of adding functionality at runtime, to say,
add a hook for calling some backup utility

Functions Right now, I’m leaning pretty heavily on the best syscall ever,
ioctl, but I’d like to get to a point where this functionality is
abstracted into at least one library. So if desired, others can build a
GUI or other front-end to this functionality.

newnix From “Hello World\n” to the VFS Layer

Internal Struct

The primary struct in use is the bootenv data struct, which gets
passed to every function working on filesystems

struct bootenv data {
struct fstab fstab;
char curlabel[NAME MAX];
struct hammer2 ioc pfs snapshot;
bool snap;

}

newnix From “Hello World\n” to the VFS Layer

All You Need is ioctl(2)

As stated previously, ioctl(2) is the best syscall of all time
This project really only requires 3 of them, but it could be
expanded to use others

HAMMER2IOC PFS DELETE

HAMMER2IOC PFS GET
HAMMER2IOC PFS SNAPSHOT

newnix From “Hello World\n” to the VFS Layer

All You Need is ioctl(2)

As stated previously, ioctl(2) is the best syscall of all time
This project really only requires 3 of them, but it could be
expanded to use others

HAMMER2IOC PFS DELETE
HAMMER2IOC PFS GET

HAMMER2IOC PFS SNAPSHOT

newnix From “Hello World\n” to the VFS Layer

All You Need is ioctl(2)

As stated previously, ioctl(2) is the best syscall of all time
This project really only requires 3 of them, but it could be
expanded to use others

HAMMER2IOC PFS DELETE
HAMMER2IOC PFS GET
HAMMER2IOC PFS SNAPSHOT

newnix From “Hello World\n” to the VFS Layer

Creation

Creating a new “boot environment” is simply creating a new PFS
for every existing HAMMER2 mountpoint with a user-provided
label, using a function that looks a bit like this:

strlcpy(bootenv data.snapshot.name, label, NAME MAX);
if ((fd = open(bootenv data.fstab.fs file, O RDONLY)) < 0) {

ioctl(fd, HAMMER2IOC PFS SNAPSHOT, &bootenv data.snapshot);
}

newnix From “Hello World\n” to the VFS Layer

Activation

Due to the nature of HAMMER2, “activation” requires replacing
the current fstab with one generated using the new filesystem
data. This is a simple loop of:

for (i = 0; i < fscount; i++) {
fprintf(efstab,"%s\n",bedata[i].fstab entry);

}

newnix From “Hello World\n” to the VFS Layer

What’s left to do?

My work on this project is far from done, so in no particular order:
Priviledge drops for functions that don’t need root access

Better task isolation
Cleanup handler
Better filesystem detection
Plugin system to extend functionality
Debug interface and status reporting with verbosity options
Library holding FS functions

newnix From “Hello World\n” to the VFS Layer

What’s left to do?

My work on this project is far from done, so in no particular order:
Priviledge drops for functions that don’t need root access
Better task isolation

Cleanup handler
Better filesystem detection
Plugin system to extend functionality
Debug interface and status reporting with verbosity options
Library holding FS functions

newnix From “Hello World\n” to the VFS Layer

What’s left to do?

My work on this project is far from done, so in no particular order:
Priviledge drops for functions that don’t need root access
Better task isolation
Cleanup handler

Better filesystem detection
Plugin system to extend functionality
Debug interface and status reporting with verbosity options
Library holding FS functions

newnix From “Hello World\n” to the VFS Layer

What’s left to do?

My work on this project is far from done, so in no particular order:
Priviledge drops for functions that don’t need root access
Better task isolation
Cleanup handler
Better filesystem detection

Plugin system to extend functionality
Debug interface and status reporting with verbosity options
Library holding FS functions

newnix From “Hello World\n” to the VFS Layer

What’s left to do?

My work on this project is far from done, so in no particular order:
Priviledge drops for functions that don’t need root access
Better task isolation
Cleanup handler
Better filesystem detection
Plugin system to extend functionality

Debug interface and status reporting with verbosity options
Library holding FS functions

newnix From “Hello World\n” to the VFS Layer

What’s left to do?

My work on this project is far from done, so in no particular order:
Priviledge drops for functions that don’t need root access
Better task isolation
Cleanup handler
Better filesystem detection
Plugin system to extend functionality
Debug interface and status reporting with verbosity options

Library holding FS functions

newnix From “Hello World\n” to the VFS Layer

What’s left to do?

My work on this project is far from done, so in no particular order:
Priviledge drops for functions that don’t need root access
Better task isolation
Cleanup handler
Better filesystem detection
Plugin system to extend functionality
Debug interface and status reporting with verbosity options
Library holding FS functions

newnix From “Hello World\n” to the VFS Layer

Sources and contact info

mastodon https://linuxrocks.online/@architect
also mastodon https://bsd.network/@newnix

site https://exile.digital
code https://exile.digital/code/c/bsd/dfbsd/beadm

github https://github.com/newnix/Forge
efnet newnix

freenode newnix
geekshed architect

Email find me later

newnix From “Hello World\n” to the VFS Layer

